Section I Multiple Choice 10 Marks

Attempt Question 1 – 10 (1 mark each) Allow approximately 15 minutes for this section.

Use the multiple choice answer sheet below to record your answers to Question 1 - 10.

Select the alternative: A, B, C or D that best answers the question.

Colour in the response oval completely.

Sample:

If you think you have made a mistake, draw a cross through the incorrect answer and colour in the new answer

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word "*correct*" and draw an arrow as follows:

2U Mathematics, 2012

Multiple Choice Answer Sheet

Student ID number:

Completely colour in the response oval representing the most correct answer.

1	А	\bigcirc	В	\bigcirc	С	\bigcirc	D	\bigcirc
2	А	\bigcirc	В	\bigcirc	С	\bigcirc	D	\bigcirc
3	А	\bigcirc	В	\bigcirc	С	\bigcirc	D	\bigcirc
4	А	\bigcirc	В	\bigcirc	С	\bigcirc	D	\bigcirc
5	А	\bigcirc	В	\bigcirc	С	\bigcirc	D	\bigcirc
6	А	\bigcirc	В	\bigcirc	С	\bigcirc	D	\bigcirc
7	А	\bigcirc	В	\bigcirc	С	\bigcirc	D	\bigcirc
8	А	\bigcirc	В	\bigcirc	С	\bigcirc	D	\bigcirc
9	А	\bigcirc	В	\bigcirc	С	\bigcirc	D	\bigcirc
10	А	\bigcirc	В	\bigcirc	С	\bigcirc	D	\bigcirc

Section I Multiple Choice (10 marks)

Attempt Question 1 – 10 (1 mark each) Allow approximately 15 minutes for this section.

Question 1

An infinite geometric series has a first term of 8 and a limiting sum of 12. What is the common ratio?

A) 1/6 B) 5/3 C) 1/2 D) 1/3

Question 2

What is the greatest value taken by the function $f(x) = 4 - 2\cos x$ for $x \ge 0$?

A) 2 B) 4 C) 6 D) 8

Question 3

What is the value of $\int_{2}^{6} \frac{1}{x+2} dx$? A) $\ln 2$ B) $\ln 4$ C) $\ln 6$ D) $\ln 8$

Question 4

The table below shows the values of a function f(x) for five values of x.

x	2	2.5	3	3.5	4
f(x)	4	1	-2	3	8

What value is an estimate for $\int_2^4 f(x) dx$ using Simpson's Rule with these five values ?

A) 4]	B)	6	C)	8	D)	12
------	---	----	---	----	---	----	----

Question 5

It is known that the number N(t) of ants in a certain nest at time $t \ge 0$ is given by $N(t) = \frac{K}{1+e^t}$ where *K* is constant and *t* is measured in months.

At time t = 0, N(t) is estimated at 2×10^5 ants. What is the value of *K*?

A) 2×10^5 B) 2×10^{-5} C) 4×10^5 D) 4×10^{-5}

JRAHS 2 Unit Trial 2012

Question 6

Sixty tickets are sold in a raffle. There are two prizes. Lincoln buys 5 tickets. Which expression gives the probability that Lincoln wins both prizes ?

A) $\frac{5}{60} + \frac{4}{59}$ B) $\frac{5}{60} + \frac{4}{60}$ C) $\frac{5}{60} \times \frac{4}{59}$ D) $\frac{5}{60} \times \frac{4}{60}$

Question 7

What is the equation of the **normal** to the curve $y = x^2 - 4x$ at (1, -3)?

A) x + 2y - 7 = 0B) x - 2y - 7 = 0C) 2x - y - 5 = 0D) 2x + y + 5 = 0

Question 8

Which of the following is the graph of $y = 2x^3 - 3x^2$?

Question 9

The region in the diagram is bounded by the curve $y = x^4$, the y-axis and the line y = 16.

Which of the following expressions is correct for the volume of the solid of revolution when this region is rotated about the *y*-axis ?

- A) $\pi \int_0^2 x^8 dx$ B) $\pi \int_0^{16} x^8 dx$
- C) $\pi \int_0^2 \sqrt{y} \, dy$ D) $\pi \int_0^{16} \sqrt{y} \, dy$

Question 10

What are the solutions to the equation $e^{6x} - 7e^{3x} + 6 = 0$?

A)	x = 1 or $x = 6$	B)	$x = 0$ or $x = \frac{\ln 6}{2}$
C)	$x = 0$ or $x = \frac{\ln 6}{3}$	D)	$x = 1$ or $x = \frac{\ln 6}{2}$

End of Section I

Section II Total Marks is 90

Attempt Questions 11 – 16. Allow approximately 2 hours & 45 minutes for this section.

Answer all questions, starting each new question on a new sheet of paper with your **student ID number** in the top right hand corner and the question number on the left hand side of your paper.

All necessary working must be shown in each and every question.

Question 11 begins on the next page

Question 11 (15 Marks)

Start a new piece of paper

Marks

2

- Simplify $\frac{3x}{x+2} \frac{5x+19}{x^2+5x+6}$ a)
- Differentiate i) $y = ln\left(\frac{x-1}{x^2}\right)$ ii) $y = x^2 \cos 4x$ b)
- $\int 3x + e^{4x} dx$ i) Integrate c)
- d) The angle of elevation of the top of tree *BT* when viewed from point *P* is $10^{\circ}12'$.

After walking 100m directly towards the tree one arrives at Q where the angle of elevation is 14°38'.

Copy the diagram and find the height of the tree to the nearest centimetre.

4

$$\int \frac{x^2 - 1}{x} \, dx \tag{4}$$

Make a careful sketch of the curve $y = 1 + 3\sin\frac{x}{2}$ over the domain $0 \le x \le 2\pi$. 2 e)

ii)

Question 12 (15 Marks)

Start a new piece of paper

Marks

a) The diagram below shows two spinners.

Each of the three outcomes on the first spinner are equally likely. On the second spinner there are ten equally likely sectors for the arrow to land on with four possible outcomes.

In a game, both spinners are spun simultaneously. The player's score is the sum of the two numbers that the spinners land on. (eg A score of 4 in the above diagram). A player wins if their score is an odd number greater than 4.

What is the probability of scoring 7? i) 1 ii) What is the probability that a player will win the first game? 3 What is the probability that a player will win the first three games? 1 iii)

Question 12 is continued on the next page

Question 12 (continued)

b)	The fo Calcu	burth term of an Arithmetic Sequence is (-12) and the tenth term is 21. late the value of the nineteenth term.	2
c)	The p The p	oint $Q(-2,1)$ lies on the line k which has equation $9x - 2y + 20 = 0$. oint $R(4,-2)$ lies on the line l which has equation $3x + y - 10 = 0$.	
	i)	Find the coordinates of P , the point on the y-axis where k and l intersect.	2
	ii)	The line <i>m</i> joins <i>Q</i> and <i>R</i> . Show that the equation of <i>m</i> is $x + 2y = 0$.	2
	iii)	Show, by shading on a sketch, the region defined by the three inequalities:	
		$9x - 2y + 20 \ge 0$, $3x + y - 10 \le 0$, $x + 2y \ge 0$.	1
	iv)	Find, as a surd, the perpendicular distance from P to m and hence, or otherwise, find the exact area of the triangle bounded by the lines k , l and m .	3
Ques	tion 1	3 (15 Marks) Start a new piece of paper	Marks
a)	i)	By completion of the square, or otherwise, show that the vertex of the parabola $x^2 - 10x + 15 = 2y$ is at $(5, -5)$	1
	ii)	Write down the focus of this parabola.	2
	iii)	Show that the parabola $y = 4x - x^2$ also passes through the point (5, -5).	1

2

3

- Find the other point of intersection of these two parabolas. iv)
- Hence find the area enclosed between the two parabolas. v)
- The velocity, \dot{x} , in m/s of a particle moving in a straight line is given by b) $\dot{x} = 1 - 2 \sin t$ for $0 \le t \le 2\pi$, where t is the time in seconds. The particle is initially at x = 2.

i)	At what time(s) is the acceleration zero?	1
ii)	What is the maximum velocity of the particle during this period. (You should demonstrate that this is a maximum and not a minimum.)	2
iii)	Find the first time that the particle changes direction during this period.	1
iv)	Hence, or otherwise, find the exact distance travelled by the particle between $t = 0$ and the time when the particle first changes direction.	2

i)

a)

Show that $FB = \frac{1}{\sqrt{3}}$ ii) iii)

Show that $\triangle DEC \parallel \mid \triangle BEF$

The region bounded by the graph $y = (x - 3)^2$ and the line y = 9 is rotated d) about the *x*-axis to form a solid of revolution.

D

Find the volume of the solid so formed.

A sheep is grazing in a large paddock which is bounded on one side by a

iii) What is the value of
$$6\beta - 2\beta^2$$
?

A square ABCD of side length 1 unit is shown below. The point F is drawn on c) AB such that $\langle DCF = 60^{\circ}$. The diagonal DB intersects CF at E.

Ε

60° С

6

Page 7

y=9

 $y = (x-3)^2$

3

1

2

1

3

1

1

Question 15 (15 Marks)

Start a new piece of paper

Marks

a) Following an accident, water started leaking out of a tank. If the volume of water in the tank was V(t) litres, then t days after the accident, the rate of change of V was given by $\frac{dV}{dt} = 20t - 300$ litres per day. When the tank stopped leaking, it still had 4750 litres in it.

i)	For how many days was the tank leaking?	1
ii)	Find a formula for V in terms of t.	3
iii)	How much water was in the tank when it started leaking?	1

b) Allcare Home Loans has a special package for first home buyers. The main details of the package, as shown in their brochure, are summarised in the table.

Stage	Term	Special Features	Interest Rate
Introductory	0-2 years	No monthly repayments	6% pa
Stage	(2 years)		compounded
			monthly
Secondary	2-10 years	Monthly repayments start. At the end of this	9% pa
Stage	(8 years)	period, the amount owing must be reduced to	compounded
		the original size of the loan.	monthly
Final	Variable	The borrower determines the size of the	12% pa
Stage	(but not	monthly repayment, provided that the loan is	compounded
	exceeding	repaid within 20 years from the start of this	monthly
	20 years)	stage.	

Alice and Bernard have accepted the terms of the above plan and they have borrowed \$500,000 to finance their first house.

Show that the amount owing at the end of the Introductory Stage, to the i) nearest dollar, is \$563,580. 1 ii) The principal for the Secondary Stage will be \$563,580. Assume that the first monthly repayment, M, is paid after one month into the Secondary period. Find M, to the nearest cent if the amount owing at the end of the 4 Secondary Stage is to be \$500,000. iii) At the start of the Final Stage, Alice and Bernard have decided that they can afford to repay \$6500 per month. α) Determine how many full payments of \$6500 it will take for the loan to have been repaid in full. 3 The last monthly repayment of \$6500 is more than required. β) How much should be refunded to Alice and Bernard? 2

Question 16 (15 Marks)

Start a new piece of paper

Marks

2

1

3

3

a) Given the function $y = \frac{10}{3+2\cos x}$ in the domain $0 \le x \le 2\pi$

i)	Find the location and nature of all the stationary points in the domain.	3
ii)	Graph the function in the given domain.	2

- b) A mining company simultaneously established three new mining towns, *A*, *B* and *C*. Each had an initial population of 500 and it was planned that they each would grow by 50 inhabitants per year for the first ten years.
 - i) Only town *A* grew as planned. Write down an expression for the intended population of town *A*, *t* years after its opening ($t \le 10$ and *t* is an integer).
 - ii) For various reasons, towns *B* and *C* did not grow as planned. Their populations are better modelled by:

Town B: $\frac{dP_B}{dt} = -0.3P_B$

Town C: $P_C = 100 \left(5 + t - \frac{t^2}{4} \right)$

- α) Show that the expression $P_B = 500e^{-0.3t}$ satisfies the equation describing town *B*.
- β) Calculate, to the nearest integer, the population of town *B* after 6 years. **1**
- γ) Find when the population of town *C* reached its maximum and what was that maximum value?
- δ) The mining company has determined that any town is unviable if the population goes below 50. Which will be the first town to close? (Justify your answer)

END OF EXAM

JRAHS 2UMATHS TRIAL, 2012

MATHEMATICS: Ouestion		MULTIPLE	CHOIC
Suggested Solutions	Marks	Marker's Comm	ents
$5_{\infty} = 12_{-}$			
1. 8 = 12			
1-1			
$P_{1}^{2} r = \bot$ (D)			
3			
2 -15 COSX <1			
\Rightarrow 4-2 ccs 2 5 6 C			
$3 \cdot \left[ln \left(x + 2 \right) \right]_{2}^{r} = ln \cdot 2 \cdot A$			
$4 A = \frac{0.5}{3} \int 4 + 4 \times (1) + (-2) \int 4 + \frac{1}{3} \int 4 +$	~~		
0:5 { -2 + 4×3 + 8 }	~~~		
- 4			
$5. 2 \times 10^5 = \frac{1}{2}$	~~		
$\frac{1 - e^{-x}}{2 \times 10^5} = \frac{1}{2} e^{\frac{1}{2}} K = \frac{4 \times 10^5}{2}$			
$6, \frac{5}{62} \times \frac{4}{4}$	5		
	~~		
	~~~		
f = 2c - Tc	~~ ]		
y' = 2x - 4			
c + z = 1 $n + z$	~~		
$(1+2) = \pm (\chi - 1)$	~~		
$g_{T3} = \overline{z}(2-1)$	~		
t = 1 - y	~~ }		
$(2)$ $(1-2x^{3}-2x^{2})$	~ 1		
$S_{i} = \frac{1}{2}$	~~		
$= \frac{1}{2} \int \frac{1}{2\pi} \left( \frac{1}{2\pi} - \frac{1}{2} \right) dx$			
$\Rightarrow$ croable rect $a_{12} = c_{12} a_{13} a_{13}$	~~		
$\frac{1}{1007} \frac{1}{1007} \frac{1}{100} = \frac{1}{100} $	~~		
, , , , , , , , , , , , , , , , , , ,	~		
$a = \sqrt{2} du$			
tititi − fill to the first	~~		
$= \pi \int \sqrt{y}  dy$			
	~~		
$10.  e^{-1}e^{-1}+b=0  let  u=e^{-1}$	~~		
$u^2 - lu + 6 = 0$			
(u-6yu-1)=c			
$e^{3x} = 6$ or $e^{3x} = 1$	~~		
$3x = ln 6 \qquad 3x = ln l$			
$3C = 12E \qquad \qquad$	D		
3			

 $[\]label{eq:callisto} \label{eq:callisto} CALLISTO\StaffHome \WOH\JRAH\ M\ Fac\ Admin\Assessment\ info\Suggested\ Mk\ solns\ template_V4.doc$ 

JRAHS ZU MATHS. TRIAL, 2012

MATHEMATICS: Question. //				
Suggested Solutions	Marks	Marker's Comments		
$\begin{array}{rcl} (a) & 3x & -5x + 19 \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$	J	(2 off for each error) Students still have difficulty		
$= \frac{3x^{2} + 4x - 19}{(x+2)(x+3)}$ (b)(i)- $y = ln(x-1)$ $x^{2}$	1	expanding with negative signs.		
$= \ln (x-1) - \ln x^{-1}$ = $\ln (x-1) - 2\ln x$		(12 off for each error)		
$\frac{1}{x} = \frac{1}{x}$ $\frac{1}{x} = \frac{1}{x}$ $\frac{1}{x} = \frac{1}{x}$	2	quotient rule instead of using log laws.		
$\frac{dy}{dx} = 2x \cdot \cos 4x + x^2 \left(-4 \sin 4x\right)$ $= 2x \left(\cos 4x - 2x \sin 4x\right)$	2	2		
$(E) (I) \int 3x + e^{-x} dx$ = $3x^{2} + e^{4x} + C$ = $\frac{3x^{2}}{2} + \frac{e^{4x}}{4} + C$ $(II) \int x^{2} - I dx$	2	(-1 if no constant		
$= \int \frac{2z}{z} - \frac{1}{z} dz$ $= \int \frac{2z}{z} - \frac{1}{z} dz$		(-1 for each error)		
$= \frac{x^2 - \ln x}{2} + C$	2	Students failing to make good use of SI. sheet.		

\\CALLISTO\StaffHome\$\WOH\JRAH M Fac Admin\Assessment info\Suggested Mk solns template_V4.doc

MATHEMATICS: Question ..... 2. Marks **Marker's Comments** Suggested Solutions Method 1 LPQT + 14°38'=180° sum of straight angle PQB=180 (f)- diàgsam : LPQT = 165° 22' PTQ + 10°12'+ 165°22'=180° '14° 38' °12 10 angle sum of APTQ=180°) 100 100 sin 4°26' Sin 165°22'  $\sin 10^{\circ} 12' = BT$ = PT sin 10° 12 10012 3 100 sin 165°221 . Sin 5in 4º 261 57.8756 ... (-i if not Thus, the height of the tree is 3 rounded off 57-88 m ( to nearest cm correctly) Method 2: LPTB + 90°+10°12' = 180° angle sum of APTB = 180° = 79°48′ LPTB Let h = BTand x = QB tan 79° 48' = 100 + 2  $\widehat{O}$ < QTB + 14°38' + 90° = 180° angle sum of AUTB is 180° Ξ tan 75°22' X 2) h tar, 75°22' From (2)  $\boldsymbol{\chi}$ subst into () 100 + h tan 75°22 tan 79048' = 79°48'- tan 75' =100 °22' 100 tan 79°48'-tan 75°22' 57.8756 .... Height of the tree is 57.88 (nearest on). 2 each for  $(\pi, 4)$ the max. pt & 4=1+3511 end pts.  $2\pi_1$ 1 equation 2 -1/2 incorrect O 271 curvature.

\\CALLISTO\StaffHome\$\WOHJRAH M Fac Admin\Assessment info\Suggested Mk solns template_V4.doc

py 1/2 MATHEMATICS: Question 1.2 **Suggested Solutions** Marks **Marker's Comments** £ (a)in P (score 90 P(5) 1st 7 ) ) I mark * If they got an J got an J i mks : 2mks max * If they a the first : 2½ mks. -Win ame 00 ()() P(104  $f(2^{-7}3)$ + P (344 C 2 + 35 line 15+ win ξi 343 17000 * A lot at students at 3-2 did NCT know the formula is a * If they left of th "-" sign for () list Y2 (512)= 1/2 * wrong formula = D mks +(n-1)- 18 x Y2 2 5x 2 ( -> 0,(0 ລ..ດ

\\CALLISTO\StaffHome\$\WOH\JRAH M Fac Admin\Assessment info\Suggested Mk solns template_V4.doc

12 **MATHEMATICS:** Question... **Marker's Comments** Marks **Suggested Solutions** Mar = 76 -2  $\mathcal{O}(\mathbf{u})$ It was a prost 1 = so you had to drow working to justify QR°0 ean the marks! all * All students needed to do was plat P, Q and R NOU R14-2 ax+by+c  $\chi + 2\eta = 0 = 0$ d= Cut. P(0,10) -2×10+0 OXI Ink how to simplify surds!!! JT2 72 20 JS units = 455 59=3 QR =  $(4 - 2)^2 + (-2 - 1)^2$ 36 45 TE 794 Acea =  $= \frac{5}{5} \times \frac{3}{5} \times \frac{4}{5} \times \frac{5}{5}$  $= \frac{3}{5} \times \frac{3}{5} \times \frac{5}{5} \times \frac$ 

\CALLISTO\StaffHome\$\WOH\JRAH M Fac Admin\Assessment info\Suggested Mk solns template_V4.doc

# 20 MATHS TRIAL SOLUTIONS, 2012



MATHEMATICS: Question 13 **Suggested Solutions** Marks **Marker's Comments** x=5-50 B=5+50 ( )) 21= x - LOX+15 5 3 Y. - YL AREA = dx Ð 4x-x- $1x^{2} - 5x + 15$  dx y=4x-x2=10 4x-x-1x2+5x -15 dx 9x - $-\frac{3}{2}\chi^2$ -15 du 5 3 15 2 . Area = Lx 125 <u>a</u>____  $\frac{1}{2} - \frac{15}{2} = \frac{15}{2} - \frac{15}{2} - \frac{17}{2}$ 9×25 - 125 - 75 -2 32 trea = 16 sq units  $\dot{z} = Y = 1 - 2 \sin t$  $o \leq t \leq z \pi$ (b) (ì) V=1 Ð v = 12 = -2 Pate t = 020=2 > × 0 x = -2cost = 012 = 0 1. cost  $\mathbf{\Pi}$ 37 0-1 5 2 T SECON accel. is zero 004 人之  $\chi = (-2 sint$ 2 As , -lesint & 1 1 -20 -1 <1-25int = 3 0 2π 31 max speed is 3mls at t = 3th 1 51 of use calcules using () (1) t= ], 37 and tEST Particle cet REST only V= 2=0 111  $\mathbb{I}$ 1-2 sint =0 1 For the s SINT  $E = \underline{T} \quad or \quad ST$   $F = \underline{T} \quad (seconds)$ 2 For TEST. 0 see sketch (1) J3 <0 ! pushed back え(芋) TEST if changes durections ----to left table: # T T the L-2 sint dt [ ROES NOT CHANGE iv) distance trovelled Ξ direction in ost st т_с Tt+2cost]o -SEE (1) [(T+2×13)-(0+2)]  $=(\underline{T}+\sqrt{3}-2)m$ 2 0.2556 ....



\CALLISTO\StaffHome\$\WOH\JRAH M Fac Admin\Assessment info\Suggested Mk solns template_V4.doc

MATHEMATICS: Question.	Marke	1g 2 Marker's Comments
(111) $\alpha + \beta = 3$ if $\alpha = 3 - \beta$ $\alpha \beta = -13$ $(3 - \beta)\beta = -13$ $3\beta - \beta^2 = -13$ $\beta = -23$ $\beta = -26$	1	$\beta^{2} = 2\beta^{2} - 2\beta^{2} - 13 = 0$ $\beta^{2} - 3\beta - 13 = 0$ $\beta^{2} - 3\beta = 13$ $\beta^{2} - 3\beta = 2x(-13)$ $= -26$
c)) In $\triangle$ FBE and $\triangle$ GDC (alternate angles are equal, AB   CD Off. sides of square) $r$ L FEB = LDEC (Vertically opposite angles are equal) :. $\triangle$ DEC   I $\triangle$ BEF (Gquiangular) $r$ ii) $\angle$ FCB = 30° ( $\angle$ DCB is 90°) FB = BC tan 30° $r$ = 1 ( $\frac{1}{15}$ ) = $\frac{1}{\sqrt{3}}$ iii) $DC = 1$ and FB = $\frac{1}{\sqrt{3}}$ :. $\frac{DC}{FB} = \frac{1}{\sqrt{3}} = \sqrt{3}$ :. $\frac{DC}{FB} = \frac{1}{\sqrt{3}} = \sqrt{3}$ :. $\frac{DC}{FB} = \frac{1}{\sqrt{3}} = \sqrt{3}$ :. $\frac{DC}{FB} = \sqrt{3}$ :. $\frac{DC}{F$	3.	Different approaches Area DEC Area BEF- Using A = 1 absinc,

.

\\CALLISTO\StaffHome\$\WOH\JRAH M Fac Admin\Assessment info\Suggested Mk solns template_V4.doc

.

MATHEMATICS: Question				
Suggested Solutions	Marks	Marker's Comments		
Suggested Solutions d): Subtract rotation 9 of chaded area from cylinder. $=\pi q^{2} \times b = \pi \int_{0}^{1} (x-3)^{2} dx$ $= 486\pi - \pi \int_{0}^{1} (x-3)^{5} \int_{0}^{1} dx$ $= 486\pi - \pi \int_{0}^{1} (x-3)^{5} \int_{0}^{1} dx$ $= 486\pi - 2\pi 3^{5}$ $= 486\pi - \frac{2\pi 3^{5}}{5}$ $= 486\pi - \frac{2\pi 3^{5}}{5}$ $= 1944\pi 5$ $388 \cdot 8\pi x^{3}$ $or = 121 \cdot 45 \cdot M^{3}$		Marker's comments V Cylinder V (x-3) 4 6 V T with 0 Ev correct working. If 486Tr - dud not Square (x-3) ² . Some did not find volome of the cylinder Some expanded (x-3) ⁴ a S x ⁴ -12x ³ + 54x ² -108x+		

.





\CALLISTO\StaffHome\$\WOH\JRAH M Fac Admin\Assessment info\Suggested Mk solns template_V4.doc

MATHEMATICS: Question..... **Suggested Solutions** Marks **Marker's Comments** 14-8 148 P 500 0 6500 30 1/2 14-8 1001 19-8 .01 × + 650000 1/2 000 ,01 =500 650000 2180 385 696 4501. 404 1/2 4 5 5 1/2 \$411 £ 5 - 68449 23 A di 60 Imk as 9 -84-4 3155 0 2 Ъ 4

3/3

 $\label{eq:calling} \label{eq:calling} \label{eq:calling} \label{eq:calling} \label{eq:calling} \label{calling} \label{calcorrelation} \$ 

1. Marks Marker's Comments **Suggested Solutions**  $O \leq x \leq 2\pi$  $(a) \quad 4 =$ 10 3 +2SINDC Students used 3+2SINX 10 1 the quotient -10 (3+25in X) × 2 cosz dy rule and many dx COSA made errors  $\chi)^2$ +2sinwith  $\frac{d}{dx}(10) = 0$ possible turning points dy For 1/2 1ē  $-20 \cos x = 0$  $\cos x = 0$ 12 <u>31</u> Testing the nature of the points Some students and (<u>3</u>11,  $(\pi_{f_2}, 2)$ used the 1 second derivative <u>37</u> 2 0 Th 271 x 0 77 (날+날 dy 20 which was more 20 20 9 9 dx 9 tedious. The function is continuous and differentiable throughout since the gradient changes sign  $\frac{1}{2}$ a relative minimun since the gradient changes. SIGN a relative max 12 10 3+25in0 When 3 8 10 3+25in277 <u> 26. =</u> 3 is an absolute minimum Thus, (II, 2) bsolute & (<u>3</u>T, TO) maximum

 $\label{eq:callisto} \label{eq:callisto} \label{calcisto} \label{eq:callisto} \label{eq:callisto} \label{eq:callisto} \label{eq:callisto} \label{calcisto} \l$ 

2. Marks **Marker's Comments Suggested Solutions** ^y ∕io (a)úi) 2 = each for endpts hsolute & 1 each for max& min. 3/2 absolute min 2 <u>317</u> 0 7 Д スカ (Errors in (i)  $P_{A} = 500 + 50 t$ 2 12 making ii)(x) 5how  $P_{\rm B} = 500e^{-0.32}$  $P_A = 500 + (t - 1)50$ sotts fies  $dP_{g} = -0.3P_{g}$  $d_{t}$  $P_{g} = 500e^{-0.3t}$ =450+50t)  $\frac{dP_{g}}{dt} = 500e^{-0.3t} \times (-0.3)$ 12 (students failed = -0.3.  $P_B$  since  $P_{=} 500e^{-1}$ 1/2 to justify the final step) Thus, PB = 5000 - 0.3 & satisfies the m equa tròn (p) When t = 6, find P_B = 500 e -0.3×6 500 c - 1-8 12 82.649. 1/2 827  $P_{\rm B} = 83$  (to the nearest integer  $\chi) P_{c} = 100 \left(5 + t - \frac{t^{2}}{\mu}\right)$ Alternatively,  $t = \frac{-(-4)}{2\times 1} = 2$ (1mk)
using  $t = \frac{-b}{2a}$  $= 500 + 100 \cdot t - 25 t^2$ 12  $\frac{dP_c}{dt} = 100 - 50t$ because the We can determine a maximum when max. lies on the = 0 and d? and d? dPc dt axis of the parabola. 100 - 50t = 0ニュ  $= \lambda$ 

\\CALLISTO\StaffHome\$\WOHJRAH M Fac Admin\Assessment info\Suggested Mk solns template_V4.doc

3. Marks **Suggested Solutions Marker's** Comments  $\frac{d^2 P_c}{dt^2}$ ź - 50 A Henatwely, dºPc <1 ıè a = -25oncave down / df2 a<0 when t=2 thus, curve is concave down Thus, there is a. after maximum 2 years and the vertex  $P_{\rm C}(\max) = 100 (5 \pm 2)$ guesa maximum. = 600 1/2 4 Pc is 600 Maximum population of people. is deemed unviable (S) A town population goes bekau the. ź  $P_{A} = 500 + 50E$ it continues t < 10, so does not àcrease. for below 50 500e-0.3t  $P_{B}$  $\frac{1}{2}$ e-0.3t e 0.3t = 10 0.3+ = in10  $t = \frac{10}{3} \ln 10$ 1/2 = 7.67 ... 500 + 100t - 25t PC 12 +2-4t  $2\times 1$ 188 70 + 2/22  $+\sqrt{22}$ 1/2 6.6904 ... The population of C will drop below 3 50 scone- than town B; thus 12 will be the first to close town С

\\CALLISTO\StaffHome\$\WOH\JRAH M Fac Admin\Assessment info\Suggested Mk solns template_V4.doc